Helicopter Flight Data Monitoring (HFDM) Research

By:
Cliff Johnson, FAA Research Lead & Flight Test Engineer – Rotorcraft & Vertical Lift/eVTOL
Aviation Research Division
FAA William J. Hughes Technical Center,
Atlantic City, NJ
Feb. 24, 2021
Helicopter Safety

Why does it matter?
FAA Helicopter Flight Data Monitoring
Research Team Members

Chris Martino
Chris Hill
Zac Noble
Jay Clark
Keith Cianfrani

Dimitri Mavris
Alexia Payan
Paola Zanella
Eugene Mangortey
Joey Robinson
Hsiang-Chui Lin

Tyler Travis
Lana Manovych
Jean-Christophe Geffard
Alexander Nouragas

Cliff Johnson
Lacey Thompson
Stephanie Stead
(FAA WJHTC Atlantic City, NJ)

Phil Greco
Anne Godfrey
Keith Cianfrani

Julian Babel

Nicky Armour
Kurt Etterer

Pete Henrikson
Jeff Currin
Matt Hilton (deceased)

Dimitri Mavris
Alexia Payan
Paola Zanella
Eugene Mangortey
Joey Robinson
Hsiang-Chui Lin

Nidhal Bouyanaya
Shreekanth Mandayam
George Lecakes

MITRE
Rowan University

Truth Data
Your Partner in FDM & Analysis

Georgia Institute of Technology

ATAC
Hi-Tec Systems
SEI

PEGASAS
Rotorcraft Mission Segments

- Air Tour
- External Load
- Airborne Law Enforcement
- Aerial Firefighting
- Search and Rescue
- Helicopter Air Ambulance
- Training
- Offshore
- Corporate/VIP Transport
USHST Top 3 Fatal Accident Occurrence Categories

1. Loss of Control
2. Unintended Instrument Meteorological Conditions
3. Low Altitude Operations
Safety Metrics for Rotorcraft Operations

- **Metrics Investigated:**
 - Proximity to Obstacles
 - Proximity to Weather
 - Dynamic Roll-over
 - Autorotation Detection
 - Vortex Ring State Detection
 - Unstabilized Approach (VFR)
 - Mast Bumping

- **In Progress:**
 - Loss of Tail Rotor Effectiveness (LTE)
 - Unstabilized Approach (IFR)
 - Autorotation Phases
 - Vortex Ring State Recovery

- **Future Work:**
 - Retreating Blade Stall
 - Helipad Overrun
Proximity to Obstacles Safety Metric
Proximity to Weather Safety Metric
Example Safety Metric: Approach Stability

- **Stable approach**: approximate constant approach angle glidepath with few fluctuations
- **Unstable approach**: fluctuations in altitude, approach angle, airspeed and/or more:

- **Goals**:
 - Automatically identify approach segments in flight recorder data
 - Use clustering techniques and performance metrics to quantify the stability of each approach
 - Use statistical analysis and machine learning to search for patterns and correlations in the data, and identify precursors to “unstable approaches”
 - FAA has identified unstabilized approaches as a leading cause of helipad overruns and other approach/landing accidents
 → Inform safety decisions, pilot training, standard operating procedures, etc.
Approach Detection Process

1. Approach event detection
 - Visual
 - Instrument

2. Visual approach stability analysis
 - IAP unavailable
 - IAP available

3. Instrument approach stability analysis
 - No close match
 - Close match

4. Classification and plotting

5. Identify nearest airfield to endpoint
 - Import airfield IAP spreadsheet
 - Identify nearest runway/helipad to endpoint

6. Compare IAP waypoints to approach path
 - Select closest IAP to approach path
Published approach plates → Approach spreadsheet format → Read into MATLAB → “Build” approaches

AirNav threshold location info

Table:

<table>
<thead>
<tr>
<th>IAP</th>
<th>Threshold latitude</th>
<th>Threshold longitude</th>
<th>Threshold elevation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILS RWY 13</td>
<td>39-27.855588N</td>
<td>74-35.460733W</td>
<td>74.8</td>
</tr>
<tr>
<td>LOC RWY 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPTER IL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COPTER LO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (RN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR RWY 31</td>
<td>39-27.082335N</td>
<td>74-33.584560W</td>
<td>63.1</td>
</tr>
<tr>
<td>LOC/DME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (RN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAV (GP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR RWY 3</td>
<td>39-26.984212N</td>
<td>74-35.109725W</td>
<td>61.4</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR RWY 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 218</td>
<td>39-27.877860N</td>
<td>74-34.496812W</td>
<td>67.2</td>
</tr>
<tr>
<td>RNAV (GPS) RWY 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR/DME RWY 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>39-27.890167N</td>
<td>74-33.955500W</td>
<td>56</td>
</tr>
</tbody>
</table>

IAP Angle

<table>
<thead>
<tr>
<th>Waypoint Type</th>
<th>Reference Method</th>
<th>Reference Altitude/Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THRESH Coincident 13</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>MAYBN FAF Straight Threshold 1600</td>
<td>4.6 128</td>
<td></td>
</tr>
<tr>
<td>CARYL IF/IAF Straight MAYBN</td>
<td>2000 6.1 128</td>
<td></td>
</tr>
<tr>
<td>CEDAR LAKE IAF Straight CARYL</td>
<td>2000 8.1 96</td>
<td></td>
</tr>
<tr>
<td>WAGIR IAF Straight CARYL</td>
<td>2000 6 218</td>
<td></td>
</tr>
<tr>
<td>KOVEC IAF Straight CARYL</td>
<td>2000 6 38</td>
<td></td>
</tr>
</tbody>
</table>

End
Holds/Procedure Turns

- Algorithm detects procedure turns/holding patterns
- Proper evaluation requires identification of procedure turn pattern or HILO-PT entry

a) Parallel
b) Teardrop
c) Direct
Approach Stability Analysis

- Automated approach detection and categorization from flight data records

- Visual approach detection params:
 - Minimum duration: 20 s
 - Approach start height: 1000 ft AGL
 - Approach end height: 90 – 110 ft AGL
 - Minimum total descent: 100 ft
 - Allowable vertical speed duration: 10 s
 - ROC upper bound: 400 ft/min

- Visualization: 3D flight mapping including local terrain and airports
 - Terrain data imported from GMTED2010 digital elevation map
 - Airport/heliport altitude data imported from FAA database
 - Terrain and heliport altitudes used to estimate height AGL
Approach Stability Metrics

- Added elevation (glideslope) and azimuth (localizer) metrics to track final approach performance
- Only calculated for the region from the FAF to a user-specified endpoint (ex.: 0.5 nm prior to threshold)
Approach Stability Analysis

- Approach stability assessment using user-selectable performance metrics

- “Ideal” approach construction:
 - Straight line from initial to final point
 - Best linear fit of actual flight path
 - User-defined ideal approach angle

- Available performance metrics:
 - Mean, standard deviation, RMS, etc.
 - Altitude and approach angle deviations

- Approach stability classification and analysis with data mining

 - Compare approaches in the user-defined performance metric space
 - k-means and DBSCAN clustering algorithms implemented
 - Allows grouping of approaches with similar stability characteristics
 - All parameters user-configurable
Interest in Loss of Control events

- 30% of all accidents involve Loss of Control (LOC)
- Going after major LOC categories
Loss of Tail-Rotor Effectiveness/Unanticipated Yaw

- Critical low-speed aerodynamic flight characteristic
- Occurs when the angle/speed of the air flow through the tail rotor is altered
- Can result in un-commanded rapid yaw rate and/or loss of aircraft control

Factors influencing LTE (helicopter specifics):
- Wind condition
- Indicated airspeed
- Gross weight
- Density altitude
- Temperature
- Rapid power change
- High power demand situations
- Pilot reaction time

- Low Risk Level
 - IAS < ETL
 - Dangerous wind direction
 - Wind speed < 30 kts
 - 50% < Pedal used < 75%

- High Risk Level
 - IAS < ETL
 - Dangerous wind direction
 - 15 kts < Wind speed < 30 kts

- Loss of Tail Rotor Effectiveness
 - Yaw rate > 20 deg/s
 - Max 100% pedal used

Federal Aviation Administration, "Unanticipated right yaw in Helicopters", Advisory circular 90-95
Current LTE Analysis via Flight Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>High</td>
<td>11500</td>
<td>2</td>
<td>3000</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Low</td>
<td>11500</td>
<td>1</td>
<td>2500</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>High</td>
<td>11500</td>
<td>2</td>
<td>2700</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Low</td>
<td>11500</td>
<td>0</td>
<td>2400</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>High</td>
<td>11400</td>
<td>1</td>
<td>2000</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Low</td>
<td>11400</td>
<td>0</td>
<td>2500</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>LTE</td>
<td>11400</td>
<td>22</td>
<td>2700</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>High</td>
<td>11400</td>
<td>2</td>
<td>2700</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>Low</td>
<td>11400</td>
<td>0</td>
<td>2700</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>High</td>
<td>11400</td>
<td>1</td>
<td>2700</td>
<td>27</td>
<td>40</td>
</tr>
<tr>
<td>28</td>
<td>High</td>
<td>11400</td>
<td>1</td>
<td>2700</td>
<td>27</td>
<td>40</td>
</tr>
</tbody>
</table>
LTE Analysis Process

Previous work:
- LTE event literature review
- Bowtie risk assessment diagram

Current work:
- MATLAB code for LTE event detection
- Flight data analysis

FlightLab LTE modeling & LTE event analysis

Participating Operators
- All Missions
- Flight Training
- Charter
- EMS
- Oil/Gas
- Logging
- Police
- News
- Cargo Lift
...

Analysis Results:
- Metric event definition
- Evaluation of barriers influences
- More recovery techniques
LTE BowTie Analysis
Development of New LTE Metric – Part 1: Interactional Aerodynamics between MR vortex and TR

- Analyze different models and show how MR and TR interactions give rise to run out of pedal scenarios
- Validation with Padfield results

Bailey Tail Rotor

BET on Tail Rotor

BET on Tail Rotor
Aerodynamic Interference
Metric visualization

Hover scenarios

Pedal Trim %

Density Altitude ft

Weight lbs

Relative wind [kts]

forward

0

90 right

180

150

120

90 right

60

30

0

90 left

180

210

240

300 left

Relative wind [kts]
Vortex Ring State Recovery Techniques Evaluation

- **Objective:** compare different recovery techniques for VRS

- **Experiments:** 2 types of recovery techniques; range of starting altitudes for recovery; 3 directions of recovery: straight, right, and left

- **Method:**
 - Find the VRS boundary based on Johnson’s model:
 - Rotor diameter
 - Local air density
 - Weight of the vehicle
 - Find the VRS recovery time:
 - Using the trajectory plot of vertical speed and horizontal speed, define recovery time as departure from VRS boundary to the point where vertical velocity reaches a positive value
 - Find the altitude drop
 - Altitude difference between entry point of VRS envelope and end point of recovery

- **Metrics to evaluate the techniques:**
 - Recovery time
 - Altitude drop
Vortex Ring State Recovery Techniques – Preliminary Results

- Duration of VRS encounter: 2.1 s
- Recovery time: 7.8 s
- Altitude drop: 155 ft

Relevant variables:

- Altitude (feet)
- Vertical speed (fpm)
- IAS (kts)
- Collective (degree)
- Long-cyclic (degrees)

Trajectory of vertical speed and horizontal speed with corresponding VRS boundary.
Aviation Safety Information Analysis and Sharing (Rotorcraft Update, 2020→2021)

- Rotorcraft Issue Analysis Team (R-IAT) formed.
- ASIAS Executive Board (AEB) incorporation of rotorcraft reps (USHST Co-Chairs).
- Developed ASIAS Procedures & Operations Plan for Rotorcraft Aviation.
- Expanding collaboration and involvement with USHST, helicopter air ambulance operators, air tour operator safety organization, business aviation, other industry organizations.
- R-IAT scoping initial analysis topics.
Questions?